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Abstract

A new infinite family of bipartite cubic 3-arc transitive graphs is con-
structed and studied. They provide the first known examples admitting a
2-arc transitive vertex-biquasiprimitive group of automorphisms for which the
stabiliser of the biparts is not quasiprimitive on either bipart.
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1 Introduction

The study of cubic s-arc-transitive graphs goes back to the seminal papers of Tutte
[13, 14] who showed that s ≤ 5. More generally, Weiss [15] proved that s ≤ 7 for
graphs of larger valency. In [12], the last author introduced a global approach to
the study of s-arc-transitive graphs.

Given a connected graph Γ with an s-arc-transitive group G of automorphisms,
if G has a nontrivial normal subgroup N with at least three orbits on vertices,
then G induces an unfaithful but s-arc-transitive action on the normal quotient ΓN
(defined in Definition 2.1). The important graphs to study are then those with no
“useful” normal quotients, that is, those for which all nontrivial normal subgroups
of G have at most two orbits on vertices. A transitive permutation group for which
all nontrivial normal subgroups are transitive is called quasiprimitive, while if the
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group is not quasiprimitive and all nontrivial normal subgroups have at most two
orbits we call it biquasiprimitive. Thus the basic graphs to study are those which are
(G, s)-arc transitive and G is either quasiprimitive or biquasiprimitive on vertices.

Now suppose that our graph Γ were bipartite. Then the even subgroup G+ (the
subgroup generated by the vertex stabilisers Gv for all v ∈ V Γ) has index 2 in G
and is transitive on each of the two biparts of Γ (see, for example, [7, Proposition
1]). Since G+ is vertex-intransitive, G is not vertex-quasiprimitive and so the basic
bipartite graphs are those where G is biquasiprimitive on vertices. The actions of
such groups were investigated in [10, 11]. However, when G is biquasiprimitive it
may still be possible to find a meaningful quotient of the graph. The subgroup G+ is
what is called locally transitive on s-arcs (see Section 2 for precise definition and [8]
for an analysis of such graphs). If G+ is not quasiprimitive on each bipart (note the
two actions of G+ are equivalent) then we can form a G+-normal quotient and obtain
a new (smaller) locally s-arc-transitive graph. However, to our knowledge there are
no such graphs in the literature and the existence of a 2-arc transitive graph with
such a group has been regarded as ‘problematic’ (see [10, Section 4]). The main
result of this paper is that there do indeed exist (G, 2)-arc transitive graphs such
that G is biquasiprimitive but G+ is not quasiprimitive on each bipart.

Theorem 1.1 There exist infinitely many connected bipartite (G, 2)-arc transitive
graphs Γ of valency 3, where G ≤ Aut(Γ), such that G is biquasiprimitive on vertices
but G+ is not quasiprimitive on either bipart.

Such permutation groups G were described in detail in [10, Theorem 1.1(c)(i)]
(see Corollary 8.9) and this theorem gives the first examples of 2-arc-transitive
graphs admitting such a group as automorphism group.

Graphs which are s-arc transitive are also s-distance transitive, provided their
diameter is at least s. Such graphs were studied in [4] where (G, s)-distance transitive
bipartite graphs with G biquasiprimitive on vertices but G+ not quasiprimitive on
each bipart were referred to as G-basic but not G+-basic (see [4, Proposition 6.3]).
Our infinite family of graphs shows that connected 2-distance transitive graphs with
such an automorphism group do indeed exist and so this answers Question 6.4 of [4]
in the affirmative for s = 2.

We prove Theorem 1.1 by constructing and analysing a new infinite family of
finite bipartite (G, 2)-arc transitive graphs Γ(f, α) of valency 3, where f is a pos-
itive integer and α lies in the Galois field GF(2f ), see Construction 5.1. Infinitely
many of these graphs are connected (Proposition 7.5). The number of pairwise non-
isomorphic connected graphs produced by Construction 5.1 grows exponentially with
f (Proposition 7.5); and each connected graph has relatively large girth (at least 10,
Proposition 8.2) and diameter (at least 6f − 3, Proposition 5.3).

Overgroups of biquasiprimitive and quasiprimitive groups are not necessarily
biquasiprimitive or quasiprimitive respectively. Indeed we have the following:

Theorem 1.2 For each connected graph Γ = Γ(f, α) defined in Construction 5.1,
with automorphism group A = Aut(Γ) given in Proposition 7.1, G is an index two
subgroup of A, Γ is (A, 3)-arc-transitive, A is not biquasiprimitive on vertices and
A+ is quasiprimitive on each bipart.
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Property P(Γ) = {∆i|1 ≤ i ≤ s}, ∆s 6= ∅
(G, s)-arc transitivity ∆i is the set of i-arcs of Γ
G-arc transitivity s = 1 and ∆1 is as in previous line
(G, s)-distance transitivity ∆i is {(v, w) ∈ V Γ× V Γ|dΓ(v, w) = i}
G-distance transitivity s = diam(Γ) and ∆i is as in previous line

Table 1: Properties for G-action on a connected graph Γ

Local property P(Γ, v) = {∆i(v)|1 ≤ i ≤ s}, ∆s(v) 6= ∅ for some v
local (G, s)-arc transitivity ∆i(v) is the set of i-arcs of Γ with initial vertex v
local G-arc transitivity s = 1 and ∆1(v) is as previous line
local (G, s)-distance transitivity ∆i(v) is Γi(v) := {w ∈ V Γ|dΓ(v, w) = i}
local G-distance transitivity s = diam(Γ) and ∆i(v) is as in previous line

Table 2: Local properties for G-action on a connected graph Γ

2 Preliminary graph definitions

We consider simple, undirected graphs Γ, with vertex-set V Γ and edge-set EΓ. For
a positive integer s, an s-arc of a graph is an (s+ 1)-tuple (v0, v1, . . . , vs) of vertices
such that vi is adjacent to vi−1 for all 1 6 i 6 s and vj−1 6= vj+1 for all 1 6 j 6 s−1.
The distance between two vertices v1 and v2, denoted by dΓ(v1, v2), is the minimal
number s such that there exists an s-arc between v1 and v2. For a connected graph Γ,
we define the local diameter of Γ at the vertex v, denoted diamΓ(v), as the maximum
value of the set {dΓ(v, w) | w ∈ V Γ}, and the diameter of Γ, denoted diam(Γ), as
the maximum local diameter of Γ. We denote a complete graph on n vertices by Kn

and a complete bipartite graph with biparts of sizes n and m by Kn,m. We refer to
K1,r as a star. A graph is called cubic if it is regular of valency 3.

We are now going to describe some properties P that hold for the G-action on a
connected graph Γ, whereG 6 Aut(Γ) and we require thatG be transitive on each set
in some collection P(Γ) of sets. For the local variant we require that for each vertex v
of Γ, the stabiliser Gv be transitive on each set in a related collection P(Γ, v) of sets.
The properties we study are given in Tables 1 and 2. These concepts are sometimes
used without reference to a particular group G, especially when G = Aut(Γ).

Definition 2.1 Let Γ be a graph, G 6 Aut(Γ), and N CG. The (normal) quotient
graph ΓN is the graph with vertex-set the set of N -orbits, such that two N -orbits
B1 and B2 are adjacent in ΓN if and only if there exist v ∈ B1 and w ∈ B2 with
{v, w} ∈ EΓ.

Definition 2.2 Let Σ be a graph. We denote by mΣ the graph whose vertex set is
{1, . . . ,m}×V Σ, such that (i1, v1) is adjacent to (i2, v2) in mΣ if and only if i1 = i2
and v1 is adjacent to v2 in Σ. In other words it is a disjoint union of m copies of Σ
with no edges between different copies.

We now define coset graphs, which will be used to describe our family of graphs,
and some of their properties.
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Definition 2.3 Given a group G, a subgroup H and an element g ∈ G such that
HgH = Hg−1H, the coset graph Cos(G,H,HgH) is the graph with vertices the right
cosets of H in G, with Hg1 and Hg2 forming an edge if and only if g2g

−1
1 ∈ HgH.

Note that a coset graph is indeed undirected since g2g
−1
1 ∈ HgH if and only if

g1g
−1
2 ∈ Hg−1H.

Lemma 2.4 Let Γ = Cos(G,H,HgH). Then the following facts hold.

(a) Γ has |G : H| vertices and is regular with valency |H : Hg ∩H|.

(b) The group G acts by right multiplication on the coset graph with kernel ∩x∈GHx,
and G is arc-transitive.

(c) Γ is connected if and only if 〈H, g〉 = G.

(d) If 〈H, g〉 6 K < G, then Γ = mΣ where m = |G : K| and Σ = Cos(K,H,HgH).

(e) Γ has |G : 〈H, g〉| connected components, each isomorphic to Cos(〈H, g〉, H,HgH).

(f) For η ∈ NAutG(H), the map η̄ : Hx 7→ Hxη is a permutation of V Γ and
induces an isomorphism from Γ to Cos(G,H,HgηH).

Proof. Statements (a) to (c) can be found in [9].
Assume 〈H, g〉 6 K < G. By Theorem 4(i,iii) of [9], there is no edge of Γ between

vertices (that is, H-cosets) lying in distinct K-cosets. On the other hand, by the
last paragraph of the proof of that same theorem, for all K-cosets Kx, the graph
induced on the H-cosets contained in Kx is isomorphic to Σ = Cos(K,H,HgH).
Hence (d) holds.

Statement (e) follows from (d) (taking K = 〈H, g〉) and (c).
Let η ∈ NAutG(H). Then η maps H-cosets to H-cosets and so induces the

permutation η̄ : V Γ→ V Γ : Hx 7→ Hxη of V Γ.
Obviously, Γ = Cos(G,H,HgH) and Cos(G,H,HgηH) have the same vertex-

set V Γ. We will now show that η̄ sends the edge-set of Γ to the edge-set of
Cos(G,H,HgηH). Let {Hx,Hy} be an edge of Γ, that is, yx−1 ∈ HgH. The map
η̄ sends it onto {Hxη, Hyη}. We have yη(xη)−1 = (yx−1)η ∈ (HgH)η. Since η nor-
malises H, (HgH)η = HgηH, and so {Hxη, Hyη} is an edge of Cos(G,H,HgηH).
Conversely, let {Hxη, Hyη} be an edge of Cos(G,H,HgηH), so that yη(xη)−1 =
(yx−1)η ∈ (HgH)η = HgηH. Then yx−1 ∈ (HgηH)η

−1
, and since η normalises

H, (HgηH)η
−1

= HgH. Therefore η̄ sends the edge-set of Γ to the edge-set of
Cos(G,H,HgηH) and (f) holds. �

3 Finite fields

This section contains facts about finite fields that we need later. We denote a field
of order q by GF(q).

Definition 3.1 Let x be an element of a field F . The subfield generated by x is the
unique smallest subfield containing x. The element x is called a generator of F if
the subfield generated by x is F , in other words, if x is not contained in any proper
subfield of F .
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Lemma 3.2 Let f be an integer and let α ∈ GF(2f ). The subfield generated by α
is GF(2e) if and only if the order of α divides 2e − 1 but does not divide 2s − 1 for
any proper divisor s of e. In particular, α is a generator of GF(2f ) if and only if the
order of α does not divide 2e − 1 for any proper divisor e of f .

Proof. Since the multiplicative group of GF(2f ) is cyclic of order 2f−1, it follows that
the multiplicative group of the subfield GF(2e) of GF(2f ) is precisely the subgroup
of order 2e − 1, with e dividing f . That subgroup is unique, since there is a unique
subgroup of each order in a cyclic group. Thus the order of α divides 2e − 1 if and
only if α ∈ GF(e). The result follows. �

Lemma 3.3 Let f be an integer, f ≥ 2, and let α be a generator of GF(2f ). Then

(1) α2i 6= α + 1 for all positive integers i < f except possibly i = f/2 (with f
even), and

(2) α2i 6= α for all positive integers i < f .

Proof. Suppose α2i = α+1 for some integer i < f . Then α22i
= (α2i)2i = 1+α2i = α,

so α22i−1 = 1. Since 0 6= α ∈ GF(2f ), we also have that α2f−1 = 1. Hence the order
of α divides gcd(22i− 1, 2f − 1) = 2gcd(2i,f)− 1. Since gcd(2i, f) is a divisor of f and
α is a generator, Lemma 3.2 implies that gcd(2i, f) = f , that is, f divides 2i. Since
f > i, this implies that f is even and i = f/2. This proves (1).

Suppose α2i = α for some positive integer i < f . Then α2i−1 = 1. Hence the
order of α divides gcd(2i − 1, 2f − 1) = 2gcd(i,f) − 1. Since gcd(i, f) is a divisor of
f and α is a generator, Lemma 3.2 implies that gcd(i, f) = f , that is, f divides i,
contradicting f > i. This proves (2). �

Lemma 3.4 Let f be an integer, f ≥ 3. Then the number of generators of GF(2f )
is strictly greater than 2f−1.

Proof. For f = 3, all elements of GF(23) \ {0, 1} are generators, hence there are 6
generators and the claim holds. Assume f ≥ 4. Let f = Πk

i=1p
ei
i , where the pi are

distinct primes and each ei ≥ 1. Let fi = f/pi. Then all elements which are not
generators are in one of the subfields GF(2fi). Hence the number of generators is
2f −|∪ki=1 GF(2fi)|. We have |∪ki=1 GF(2fi)| ≤ 1 + Σk

i=1(2fi−1) since 0 is in all fields.
Since fi ≤ f/2 for all i, we have | ∪ki=1 GF(2fi)| ≤ 1 + k(2f/2 − 1) ≤ k2f/2. Since
f ≥ Πk

i=1pi ≥ 2k, we have k ≤ log2(f), and so | ∪ki=1 GF(2fi)| ≤ log2(f)2f/2. It is
easy to check that, for f ≥ 4, log2(f) ≤ 2f/2−1, and so log2(f)2f/2 ≤ 2f−1. We can
now conclude that the number of generators is at least 2f − 2f−1 = 2f−1.

Suppose we get equality. Then we have equality in all our inequations. In
particular 1 + k(2f/2 − 1) = k2f/2, and so k = 1, and k = log2(f), so f = 2k. Thus
f = 2, a contradiction. Therefore the number of generators is greater than 2f−1. �

Lemma 3.5 Let ` be an integer, ` ≥ 2. Then the number of generators of GF(22`)
which do not satisfy the equation x2` = x+ 1 is strictly greater than 2`(2`−1 − 1)

Proof. By Lemma 3.4, GF(22`) contains more than 22`−1 generators. Since the
equation x2` = x + 1 has degree 2`, it has at most 2` solutions. Hence the number
of generators not satisfying the equation is greater than 22`−1− 2` = 2`(2`−1− 1). �
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4 The group PSL(2, 2f)

The elements of a group PSL(2, q) may be viewed as permutations of X := GF(q) ∪
{∞}. More precisely ta,b,c,d is the element:

ta,b,c,d : x 7→ ax+ b

cx+ d
for all x ∈ X (1)

where a, b, c, d ∈ GF(q) are such that ad− bc is a nonzero square of GF(q). We adopt
the convention that ∞ is mapped by ta,b,c,d onto ac−1 and that an element of GF(q)
divided by 0 is ∞. For q = 2f , all nonzero elements of GF(q) are squares, and the
automorphism group of PSL(2, q) is PΓL(2, q) = 〈PSL(2, q), τ〉, where

τ : ta,b,c,d 7→ ta2,b2,c2,d2 for each ta,b,c,d ∈ PSL(2, q). (2)

In this paper we will take T = PSL(2, 2f ) for some f ≥ 1. For each subfield
GF(2e) of GF(2f ), we identify PSL(2, 2e) with the subgroup of T of those ta,b,c,d with
all of a, b, c, d ∈ GF(2e). In our construction, we will use the following notation for
elements of H = PSL(2, 2) 6 T .

a = t1,1,1,0 : x 7→ 1 +
1

x
, b = t1,1,0,1 : x 7→ x+ 1. (3)

Note that a has order 3, b has order 2, and H = 〈a〉o 〈b〉 ∼= S3. For α ∈ GF(2f ), we
will also need the following elements of T :

uα = t1,α,0,1 : x 7→ x+ α, cα = auα = tα+1,α2+α+1,1,α. (4)

Let P be the Sylow 2-subgroup of T containing the involution b = u1, that is,
P = {uα|α ∈ GF(2f )}. Then NT (P ) ∼= AGL(1, 2f ) is the set of permutations
tr,s,0,1 : x 7→ rx+ s with r 6= 0.

Lemma 4.1 Let α ∈ GF(2f ). Using the notation introduced above, the following
facts hold.

(a) CT (b) = P . In particular, uαb = buα = uα+1 and CH(b) = 〈b〉.

(b) For α 6= 0, the element zα := tα−1,0,0,1 ∈ NT (P ). Moreover uα = bzα and the
order of zα is equal to the multiplicative order of α.

(c) cτ
i

α = c−1
α if and only if α2i = α + 1.

(d) NT (H) = H.

(e) If the subfield generated by α is GF(2e), then 〈H, uα〉 = PSL(2, 2e).

Proof. (a) The centraliser of b in T is easily computed. Since uα ∈ P , it then
commutes with b, and buα = uα+1. Also CH(b) = CT (b) ∩H = 〈b〉.
(b) A calculation shows that uzαy = uαy ∈ P , and so zα ∈ NT (P ). Also uα = uzα1 =
bzα . Since zjα = tα−j ,0,0,1 the rest of the statement follows.
(c) This is a simple calculation left to the reader.
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(d) Let D = NT (〈a〉). Now D is a dihedral group D2(2f±1), see [5, Section 260].
Since 〈a〉 ∼= C3 is characteristic in H ∼= S3, NT (H) 6 NT (〈a〉) = D, and so
NT (H) = ND(H). Since an S3 subgroup in a dihedral group D2n, n odd, is self-
normalising, we have that ND(H) = H. Thus NT (H) = H.
(e) Suppose the subfield generated by α is GF(2e). If e = 1, then α = 0 or 1,
uα ∈ H and 〈H, uα〉 = H = PSL(2, 2). Assume now e ≥ 2. Since all the subscripts
of uα = t1,α,0,1 are in GF(2e), we obviously have 〈H, uα〉 6 PSL(2, 2e). Suppose that
〈H, uα〉 6M , where M is a maximal subgroup of PSL(2, 2e). Since 〈H, uα〉 contains
a subgroup isomorphic to S3, M cannot be isomorphic to AGL(1, 2e) (for e even, 3
divides |AGL(1, 2e)| but no involution in AGL(1, 2e) inverts an element of order 3).
Also since 〈H, uα〉 contains subgroups which are isomorphic to C2

2, M cannot be
isomorphic to D2(2e±1). It follows from the list of maximal subgroups of PSL(2, 2e)
(see [5, Section 260]) that M ∼= PSL(2, 2s) for some proper divisor s of e. Since
b, uα ∈ M and commute, they lie in the same Sylow 2-subgroup S of M , so there
exists x ∈ M such that bx = uα. Hence bx = uα = bzα (by Part (b)), and so xz−1

α

centralises b. Since CT (b) = P by (a), we obtain that x ∈ Pzα. Since zα ∈ NT (P )
has order n := |α|, it follows that x has order divisible by n. Moreover, x must be
in NM(S) ∼= AGL(1, 2s), and so the order of x divides 2s− 1. Thus n divides 2s− 1,
a contradiction to Lemma 3.2. Thus, 〈H, uα〉 = PSL(2, 2e). �

5 The family of graphs

Let f be a positive integer, and let T , H, a, b, α, zα (for α 6= 0), uα, and cα be as
in Section 4.

Construction 5.1 Let G = T 2 o 〈π〉, where π ∈ Aut(T 2) is such that (x, y)π =
(y, x), for all elements (x, y) ∈ T 2. Let L = 〈(a, a), (b, b)〉 < T 2, and

gα = (uα, buα)π = (uα, uαb)π = (t1,α,0,1, t1,α+1,0,1)π. (5)

By Lemma 5.2(c) below, g−1
α = gα(b, b) . Thus Lg−1

α L = Lgα(b, b)L = LgαL. Define
Γ = Γ(f, α) = Cos(G,L, LgαL).

We shall need information about the following subgroups:

Xα = 〈L, gα〉, Nα = 〈L, (c−1
α , cα)〉. (6)

Lemma 5.2 The following facts hold.

(a) |G| = 22f+1(22f − 1)2.

(b) (a, a)gα = (c−1
α , cα), where cα is as in (4) and has order 3. Thus Nα 6 Xα.

(c) g−1
α = gα(b, b) and (b, b)gα = (b, b).

(d) For f ≥ 2 and α a generator of GF(2f ), either Nα = T 2 or Nα = {(t, tν)|t ∈
T} ∼= T for some ν ∈ Aut(T ).
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Proof. (a) follows from the fact that |G| = 2|T |.
(b) We have (a, a)gα = (auα , (ab)uα)π = (cα, c

−1
α )π = (c−1

α , cα), by (4), and hence
Nα 6 Xα. Since cα is conjugate to a, it has order 3.
(c) We have g2

α(b, b) = (uα, buα)π(uα, buα)π(b, b) = (uα, buα)(buα, uα)(b, b) = (1, 1)
since uαb = buα by Lemma 4.1(a). Thus g−1

α = gα(b, b). We also have (b, b)gα =
(buα, b

uαb)π = (b, b)π = (b, b), using Lemma 4.1(a) for the second equality.
(d) The projections of Nα onto each of the two coordinates are equal to 〈a, b, cα〉.
Since uαb = buα, the subgroup 〈a, b, cα〉 of T is normalised by each of a, b and uα.
Hence 〈a, b, cα〉C 〈a, b, uα〉, and 〈a, b, uα〉 = T by Lemma 4.1(e). Thus 〈a, b, cα〉 = T
since T is simple, and so Nα = T 2 or Nα

∼= T . In the latter case, Nα is a diagonal
subgroup of T 2 and hence Nα = {(t, tν)|t ∈ T} ∼= T for some ν ∈ Aut(T ). �

We first describe some general properties of the graphs Γ(f, α).

Proposition 5.3 Let f > 1 be an integer and α be an element of GF(2f ). Let
Γ = Γ(f, α), G, T , L, π be as in Construction 5.1. Then Γ is bipartite, cubic,
and, if Γ is connected, then it has diameter at least 6f − 3. Moreover, G+ = T 2,
G 6 Aut(Γ) and |V Γ| = 22f (22f − 1)2/3.

Proof. By Lemma 5.2(b), (a, a)gα = (c−1
α , cα), which is not in L since cα 6= c−1

α , and,
by Lemma 5.2(c), (b, b)gα = (b, b). Thus the intersection Lgα ∩ L = 〈(b, b)〉 ∼= C2,
and so the graph Γ has valency |L : Lgα ∩ L| = 3 (hence is cubic) by Lemma 2.4(a).
Moreover, T 2 has two orbits on the cosets of L, and since T 2 ∩ LgαL = ∅, no
vertices in the same orbit are adjacent. Hence Γ is bipartite. Since T 2 is an index
2 subgroup of G and its orbits are the two biparts, the even subgroup G+, that
is, the stabiliser of the two biparts, is precisely T 2. The number of vertices of Γ is
|G|/|L| = 22f (22f − 1)2/3, with each bipart of size 22f−1(22f − 1)2/3.

Suppose Γ is connected and let d = diam(Γ). Since G is transitive on V Γ,
d = diamΓ(L). We have |Γ1(L)| = 3 and |Γi(L)| is at most 2|Γi−1(L)| for 2 6 i 6 d.
Hence the number of vertices of Γ is at most 1+3+3.2+ . . .+3.2d−1 = 1+3(2d−1).
Therefore 22f (22f −1)2/3 6 1+3(2d−1), or equivalently 22f (22f −1)2/9+2/3 6 2d,

which implies 22f (22f − 1)2/9 < 2d. Thus (22f − 1)/3 < 2
d
2
−f . Now for all f ≥ 1, we

have (22f − 1)/3 ≥ 22f/4 = 22f−2, and so 22f−2 < 2
d
2
−f . Therefore 2f − 2 < d

2
− f

and d > 6f − 4. Since ∩x∈GLx is trivial, it follows from Lemma 2.4(b) that G acts
faithfully on Γ, and hence G 6 Aut(Γ). �

Note that the bound on the diameter is not tight. For example, for f = 3 a
MAGMA [2] computation shows that Γ(3, α) has diameter 21 for α a generator of
GF(8) (we will see in Corollary 7.6 that the graph is connected in this case).

6 Equality and connectivity

We first have a lemma determining when graphs obtained by Construction 5.1 have
the same edge-set.

Proposition 6.1 Let f ≥ 1. Let α, β be elements of GF(2f ). Then Γ(f, α) =
Γ(f, β) if and only if β ∈ {α, α + 1}.
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Proof. Suppose that Γ(f, α) = Γ(f, β). Then the double cosets LgαL and LgβL
coincide, and so gβ ∈ LgαL. Since π centralises L, this imples, using (5), that
(uβ, buβ) = (h1, h1)(uα, buα)(h2, h2) for some h1, h2 ∈ H. Thus h1buαh2 = buβ =
bh1uαh2, and so h1 commutes with b. Since b centralises P by Lemma 4.1(a) and
uα, uβ ∈ P , we also have h1uαbh2 = uβb = h1uαh2b, and so h2 also commutes with
b. Hence h1, h2 ∈ CH(b) = 〈b〉 by Lemma 4.1(a). If h1 = h2, then α = β, and if
h2 = h1b then β = α + 1.

Conversely, if β = α + 1, then gβ = (uβ, uβb)π = (uαb, uα)π = gα(b, b), and so
LgαL = LgβL. Thus Γ(f, α) = Γ(f, β). �

For f = 1 Construction 5.1 yields only one graph.

Lemma 6.2 Γ(1, 0) = Γ(1, 1) = 2K3,3

Proof. Here T = H, and by Proposition 6.1, Γ(1, 0) = Γ(1, 1) so we may assume α =
0. Thus uα = 1 and gα = (1, b)π. It can be computed that 〈L, gα〉 = {(x, y)|x−1y ∈
〈a〉}∪{(x, yb)π|x−1y ∈ 〈a〉} has index 2 inG. Therefore by Lemma 2.4(e), Γ(1, 0) has
2 connected components. Each must be bipartite and have valency 3 by Proposition
5.3, hence the conclusion. �

The next two general results allow us to determine the connected components of
Γ(f, α).

Lemma 6.3 Let α be an element of GF(2f ) and let GF(2e) be the subfield generated
by α. Then Γ(f, α) ∼= mΓ(e, α), where m = |T : PSL(2, 2e)|2.

Proof. Let K = PSL(2, 2e)2 o 〈π〉 viewed as a subgroup of G. Then gα ∈ K and
L 6 K, and so 〈L, gα〉 6 K. By Lemma 2.4(d), Γ(f, α) = mΣ where m = |G : K|
and Σ = Cos(K,L, LgαL). Finally, m = |G : K| = 2|T |2/(2|PSL(2, 2e)|2) = |T :
PSL(2, 2e)|2. �

Proposition 6.4 Let f ≥ 2 and α ∈ GF(2f ) be a generator.

(a) If f is odd, or if f is even and α2(f/2) 6= α + 1, then Γ(f, α) is connected.

(b) If f is even and α2(f/2)
= α + 1, then Γ(f, α) has |T | connected components,

each containing |T |/3 vertices and isomorphic to Cos(〈T, ν〉, H,HuανH) where
H = PSL(2, 2) and ν = τ (f/2).

Proof. We set Xα = 〈L, gα〉 and Nα = 〈L, (c−1
α , cα)〉 as in (6). By Lemma 2.4(e), the

number of connected components of Γ(f, α) is |G : Xα| and all connected components
are isomorphic to Cos(Xα, L, LgαL).

We have α /∈ {0, 1}, since α is a generator and f 6= 1.
By Lemma 5.2(b), Nα 6 Xα, and by Lemma 5.2(d), either Nα = T 2 or Nα =

{(t, tν)|t ∈ T} for some ν ∈ Aut(T ). In the latter case, since Nα contains (a, a), (b, b)
and (c−1

α , cα), ν must be in CAut(T )(〈a, b〉) and must satisfy cνα = c−1
α . Since 〈a, b〉 =

PSL(2, 2), we have CAut(T )(〈a, b〉) = CAut(T )(PSL(2, 2)) = Aut(GF(2f )) = 〈τ〉 ∼= Cf ,
where τ is the Frobenius automorphism described in (2). .

Assume f is odd, or f is even and α2(f/2) 6= α + 1. Then by Lemma 3.3(1),
α2i 6= α + 1 for all i < f , and so by Lemma 4.1(c), cτ

i

α 6= c−1
α for all i < f . Hence
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there is no ν ∈ CAut(T )(〈a, b〉) satisfying cνα = c−1
α . Thus Nα = T 2, and so Xα = G

since gα /∈ T 2. Thus Γ(f, α) is connected and (a) holds.
Now assume f is even and α2i = α + 1, where i = f/2. Let ν := τ i. By Lemma

4.1(c), ν ∈ CAut(T )(〈a, b〉) and satisfies cνα = c−1
α , and so Nα = {(t, tν)|t ∈ T} ∼= T .

Notice ν is an involution. We have Nα 6 Xα, and so 〈Nα, gα〉 6 〈Xα, gα〉 = Xα.
On the other hand, Xα = 〈(a, a), (b, b), gα〉 6 〈(a, a), (b, b), (c−1

α , cα), gα〉 = 〈Nα, gα〉.
ThusXα = 〈Nα, gα〉. Notice that uνα = t1,α2i ,0,1 = uα+1 = uαb, and so gα = (uα, u

ν
α)π.

Therefore 〈Nα, gα〉 = 〈Nα, π〉 = Nα o 〈π〉. Hence, |Xα| = 2|Nα| = 2|T |. Moreover,
Xα = {(t, tν)πε|t ∈ T, ε ∈ {0, 1}}. Also the number of connected components is
|G : Xα| = |T | by Lemma 2.4(e).

We now prove that Xα is isomorphic to 〈T, ν〉. We define

φ : Xα → 〈T, ν〉 : (t, tν)πε 7→ tνε.

We first show that φ is a homomorphism, that is, that φ((t1, t
ν
1)πε1(t2, t

ν
2)πε2) =

φ((t1, t
ν
1)πε1)φ((t2, t

ν
2)πε2). This clearly holds for ε1 = 0. We now prove the case

ε1 = 1.

φ((t1, t
ν
1)π(t2, t

ν
2)πε2) = φ((t1, t

ν
1)(tν2, t2)ππε2)

= φ((t1t
ν
2, t

ν
1t2)π1−ε2)

= t1t
ν
2ν

1−ε2

= t1νt2νν
1−ε2

= (t1ν)(t2ν
ε2)

= φ((t1, t
ν
1)π)φ((t2, t

ν
2)πε2).

Thus φ is a homomorphism. Clearly Kerφ = 1, and |Xα| = |〈T, ν〉| = 2|T |, and so φ
is a bijection. Therefore φ is an isomorphism.

Notice that φ(L) = 〈a, b〉 = H and φ(gα) = uαν.
By Lemma 2.4(e), each connected component of Γ(f, α) is isomorphic to Cos(Xα, L, LgαL),

and φ induces a graph isomorphism Cos(Xα, L, LgαL) ∼= Cos(〈T, ν〉, H,HuανH).
Thus (b) holds. �

Note that the proof of Proposition 6.4 uses the fact that T is simple through
Lemma 5.2(d) and hence requires f ≥ 2.

Putting together Lemma 6.3 and Proposition 6.4, we get the following corollary.

Corollary 6.5 Let f ≥ 2 and let GF(2e) be the subfield generated by α.

(a) if e is odd, or if e is even and α2(e/2) 6= α+ 1, then Γ(f, α) = mΓ(e, α), where
m = |T : PSL(2, 2e)|2 and Γ(e, α) is connected.

(b) if e is even and α2(e/2)
= α+1, then Γ(f, α) has |PSL(2, 2e)|−2|PSL(2, 2f )|3 con-

nected components, each isomorphic to Cos(〈PSL(2, 2e), ν〉, H,HuανH), where
H = PSL(2, 2) and ν = τ (e/2).

We can now deal with the case f = 2. Take GF(4) = {a + bi|a, b ∈ GF(2), i2 =
i + 1}. , By Proposition 6.1, Construction 5.1 yields two graphs for f = 2, namely
Γ(2, 0) and Γ(2, i).
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Corollary 6.6 The two graphs obtained by Construction 5.1 for f = 2 are not
connected. More precisely,

(a) Γ(2, 0) ∼= 200K3,3, and

(b) Γ(2, i) ∼= 60D where D is the incidence graph of the Desargues configuration,
called the Desargues graph (it is a double cover of the Petersen graph).

Proof. Consider first α = 0. By Lemma 6.3, Γ(2, 0) ∼= mΓ(1, 0), where m =
|PSL(2, 22) : PSL(2, 21)|2 = 100. Part (a) follows from Proposition 6.2.

Now assume α = i. Then α2(f/2)
= i2 = i + 1 = α + 1, so part (b) of Propo-

sition 6.4 holds. Here uα = t1,i,0,1 and ν = τ . Thus Γ(2, i) has |PSL(2, 22)| =
60 connected components, each containing 60/3 = 20 vertices and isomorphic to
Cos(PΓL(2, 4), H,HuατH) where H = PSL(2, 2). There are only two arc-transitive
cubic graphs on 20 vertices, the Desargues graph and the dodecagon (see [1, p.148]).
Since Γ(2, i) is bipartite by Proposition 5.3, its connected components cannot be
dodecagons, hence they are Desargues graphs. The Desargues graph has vertices
the points and lines of the Desargues configuration, with two vertices adjacent if
they form a flag (incident point-line pair) of the configuration. It is a double cover
of the Petersen graph. �

7 Automorphism groups and isomorphisms for con-

nected Γ(f, α)

The remainder of this paper is concerned mainly with the connected graphs Γ(f, α)
given by Construction 5.1, that is, we may assume from now on that α is a generator
and, if f is even, then α2(f/2) 6= α+1 (see Corollary 6.5). By Lemma 6.2 and Corollary
6.6, we may assume that f ≥ 3.

In this section, we determine the full automorphism group A of Γ = Γ(f, α) and
the normaliser of A in Sym(V Γ). This will then enable us to determine a lower
bound on the number of non-isomorphic such graphs, for a given f .

Proposition 7.1 Let f > 3 be an integer and α ∈ GF(2f ). Let Γ = Γ(f, α), G, T ,
L, π be as in Construction 5.1 with Γ connected. The full automorphism group of
Γ is A = G× 〈σ〉, where σ is given by (Lx)σ = Lπx for all x ∈ G. In particular, A
does not depend on the choice of α and Γ is (A, 3)-arc transitive but not (A, 4)-arc-
transitive. Moreover, the stabiliser in A of the vertex L is L× 〈πσ〉 ∼= D12.

Proof.
Let A be the full automorphism group of Γ. By Proposition prop:generalities,

G 6 A. Define the map σ on V Γ by (Lx)σ = Lπx for all x ∈ G. This is a
well defined bijection, since π centralises L. Consider an edge {Lg1, Lg2}, that
is, g2g

−1
1 ∈ LgαL. Its image under σ is {Lπg1, Lπg2}. We have πg2(πg1)−1 =

πg2g
−1
1 π ∈ πLgαLπ = LπgαπL. Recall that gα = (uα, uαb)π and uαb = buα, so

πgαπ = (uαb, uα)π = (b, b)gα. Thus LπgαπL = LgαL, so {Lg1, Lg2}σ is an edge, and
σ ∈ A. We now show that σ centralises G. Indeed, let h ∈ G and Lx ∈ V Γ, then
(Lx)hσ = (Lxh)σ = Lπxh = (Lπx)h = (Lx)σh. Hence σh = hσ, and σ ∈ CA(G).

11



Since Z(G) = 1, we have σ /∈ G. Also σ2 = 1. Therefore R := G × 〈σ〉 6 A. The
stabiliser of L ∈ V Γ in R is RL = L× 〈πσ〉 ∼= S3 × C2

∼= D12.
By Lemma 2.4(b), Γ is (G, 1)-arc transitive, and so is (R, 1)-arc transitive. Tutte

[13, 14] proved that the automorphism group of an arc-transitive finite graph with
valency 3 acts regularly on s-arcs for some s 6 5, and the stabiliser of a vertex has
order 3.2s−1. Since |RL| = 12, R acts regularly on the 3-arcs of Γ (and hence is not
transitive on 4-arcs).

Suppose R < A. Since both R and A are transitive on V Γ, the Orbit-Stabiliser
Theorem implies that RL < AL, and so A would act regularly on s-arcs for some
s = 4 or 5. By Theorem 3 of [7], this is not possible. Hence A = R. �

Definition 7.2 Let Γ = Γ(f, α) (not necessarily connected). We define τ̄ : V Γ →
V Γ : L(c, d)πε 7→ L(cτ , dτ )πε for each (c, d) ∈ T 2, ε ∈ {0, 1}, where τ is as defined
in (2).

Lemma 7.3 Let Γ = Γ(f, α) (not necessarily connected) and let τ̄ be as in Defini-
tion 7.2. Then τ̄ induces an isomorphism from Γ to Γ(f, α2). Moreover 〈τ̄〉 ∼= Cf .

Proof. We have τ , as defined in (2), in Aut(T ). We denote by µ the element of
Aut(G) defined by (c, d)µ = (cτ , dτ ) for all (c, d) ∈ T 2 and by πµ = π. Then,
since µ centralises (a, a) and (b, b), we have that µ ∈ NAutG(L). Thus we can
use Lemma 2.4(f), with µ̄ : Lx 7→ Lxµ. More precisely for (c, d) ∈ T 2, ε ∈
{0, 1}, we have (L(c, d)πε)µ̄ = L(c, d)µ(πε)µ = L(cτ , dτ )πε. Hence µ̄ = τ̄ is a
permutation of V Γ and induces an isomorphism from Γ = Cos(G,H,HgαH) to
Cos(G,H,HgµαH) by Lemma 2.4(f). Note that gµα = ((t1,α,0,1, t1,α+1,0,1)π)µ (see
(5)), and so gµα = ((t1,α,0,1)τ , (t1,α+1,0,1)τ )π = (t1,α2,0,1, t1,α2+1,0,1)π = gα2 . There-
fore Cos(G,H,HgµαH) = Γ(f, α2).

For i ≥ 1, the permutation τ̄ i of V Γ maps the coset L(c, d)πε onto L(cτ
i
, dτ

i
)πε.

Thus τ̄ has the same order as τ , and so 〈τ̄〉 ∼= Cf . �

We now determine NSym(V Γ)(A).

Lemma 7.4 Let Γ = Γ(f, α) and A be as in Proposition 7.1. Then NSym(V Γ)(A) =
Ao 〈τ̄〉 ∼= A.Cf , where τ̄ is as defined in Definition 7.2.

Proof. Set N := NSym(V Γ)(A) and N0 := 〈A, τ̄〉. We use the notation of Construc-
tion 5.1. By Lemma 7.3, τ̄ ∈ Sym(V Γ). Moreover, it follows from the definitions of
τ̄ and σ that τ̄−1(c, d)τ̄ = (cτ , dτ ) for each (c, d) ∈ T 2, and [τ̄ , σ] = [τ̄ , π] = 1. Thus
N0 = Ao 〈τ̄〉 6 N with N0/A ∼= 〈τ̄〉 ∼= Cf .

Since T 2 is a characteristic subgroup of A, each element of N induces an au-
tomorphism of T 2, and we have a homomorphism ϕ : N → Aut(T 2) with ker-
nel K = CN(T 2) ≤ CSym(V Γ)(T

2) = C, say. Now K (and hence C) contains
Z(A) = 〈σ〉 ∼= C2, which interchanges the two orbits of T 2 in V Γ, and so the
subgroup C+ of C stabilising each of the T 2-orbits setwise has index 2 in C. The
two T 2-orbits are the sets ∆1 and ∆2 of L-cosets in T 2 and T 2gα respectively, and L
is the stabiliser in T 2 of the vertex L of ∆1 and also the stabiliser in T 2 of the vertex
Lπ of ∆2. For i = 1, 2, let Si, Li denote the permutation groups on ∆i induced by
T 2 and L respectively. Then by Lemma 4.1(d), NSi(Li) = Li and by [6, Theorem
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4.2A(i)], CSym(∆i)(Si)
∼= NSi(Li)/Li = 1. Thus C+ = 1 and K = C = 〈σ〉, of order

2.
Now ϕ(N) contains the inner automorphism group ϕ(T 2) of T 2, and the quotient

ϕ(N)/ϕ(T 2) is contained in the outer automorphism group of T 2, which is isomor-
phic to 〈τ〉 o 〈π〉. Further, ϕ(N)/ϕ(T 2) normalises ϕ(A)/ϕ(T 2), which corresponds
to the subgroup 〈π〉 of 〈τ〉 o 〈π〉, and so the subgroup of 〈τ〉 o 〈π〉 corresponding to
ϕ(N)/ϕ(T 2) lies in the normaliser of 〈π〉 in 〈τ〉o〈π〉, namely 〈(τ, τ)〉×〈π〉 ∼= Cf×C2.
On the other hand ϕ(N)/ϕ(T 2) contains ϕ(N0)/ϕ(T 2) ∼= 〈τ̄〉 × 〈π〉. Thus equality
holds and we conclude that N = N0. �

We are now able to determine a lower bound on the number of non-isomorphic
connected graphs Γ(f, α) for each f . They are obviously not isomorphic for different
values of f , so in particular, it follows that there are infinitley many such graphs,
as the lower bound is increasing with f .

Proposition 7.5 Let f ≥ 3.

(a) Let Γ(f, α) and Γ(f, β) be connected graphs. Then Γ(f, α) ∼= Γ(f, β) if and
only if β ∈ {α2i |0 ≤ i < f} ∪ {α2i + 1|0 ≤ i < f}.

(b) The number of pairwise non-isomorphic connected graphs Γ obtained from
Construction 5.1 is greater than 2f−2/f if f is odd and greater than (2f−2 −
2f/2−1)/f if f is even.

Proof. Let Γ = Γ(f, α) and Γ(f, β) be connected graphs produced by Construc-

tion 5.1. By Corollary 6.5, α and β are generators, and if f is even then α2(f/2) 6= α+1
and β2(f/2) 6= β + 1.

Suppose that ψ is an isomorphism from Γ(f, α) to Γ(f, β). Since V Γ = V Γ(f, β),
the isomorphism ψ is an element of Sym(V Γ) and since, by Proposition 7.1, Aut(Γ(f, α)) =
Aut(Γ(f, β)) = A, it follows that ψ is an element of NSym(V Γ)(A). By Lemma 7.4,
NSym(V Γ)(A) = Ao〈τ̄〉. Thus Γ(f, β) is the image of Γ(f, α) under τ̄ i for some i such

that 0 ≤ i < f . We have Γ(f, β) = Γ(f, α)τ̄
i

= Γ(f, α2i) by Lemma 7.3. Therefore,
by Proposition 6.1, β = α2i or α2i + 1, and so β ∈ {α2i |0 ≤ i < f} ∪ {α2i + 1|0 ≤
i < f}.

Suppose now that β ∈ {α2i |0 ≤ i < f} ∪ {α2i + 1|0 ≤ i < f}. Then, by
Proposition 6.1, Γ(f, β) = Γ(f, α2i) for some 0 ≤ i < f , which, by Lemma 7.3, is
equal to Γ(f, α)τ̄

i
, where τ̄ i is a graph isomorphism. Hence Γ(f, α) ∼= Γ(f, β) and

part (a) holds.

Let α be a generator such that, if f is even, α2(f/2) 6= α + 1 . We claim that the
set {α2i |0 ≤ i < f} ∪ {α2i + 1|0 ≤ i < f} has size 2f . Notice first that all elements

x of this set are generators and do not satisfy the equation x2(f/2) 6= x+ 1. Suppose
α2i = α2j for some i, j such that 0 ≤ i < j < f , then α2i = (α2i)2j−i , contradicting
Lemma 3.3(2) for the generator α2i . Hence {α2i |0 ≤ i < f} and {α2i + 1|0 ≤ i < f}
both have size f . Now suppose α2i = α2j + 1 for some i, j such that 0 ≤ i < j < f
(we can assume i < j without loss of generality, because otherwise we just add 1 to
both sides of the equation). Thus α2i = (α2i)2j−i +1. Applying Lemma 3.3(1) to the

generator α2i , we get that f is even, j − i = f/2 and α2i = (α2i)2f/2 + 1. However,
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since α2i does not satisfy the equation x2(f/2) 6= x+ 1, this is a contradiction. Thus
the claim is proved.

Suppose first f is odd. Then Γ(f, α) is connected if and only if α is a generator,
by Corollary 6.5. By Lemma 3.4, the number of generators of GF(2f ) is strictly
greater than 2f−1. By the claim and part (a), exactly 2f of those generators yield
isomorphic graphs, thus the number of pairwise non-isomorphic connected graphs is
greater than 2f−2/f .

Finally assume f is even. Then Γ(f, α) is connected if and only if α is a generator

and α2(f/2) 6= α + 1, by Corollary 6.5. By Lemma 3.5, the number of such elements
is greater than 2f/2(2f/2−1 − 1). By the claim and part (a), exactly 2f of those
generators yield isomorphic graphs, thus the number of pairwise non-isomorphic
connected graphs is greater than 2f/2−1(2f/2−1 − 1)/f = (2f−2 − 2f/2−1)/f . �

We illustrate this result by considering the case f = 3 where we obtain the first
connected examples. Take GF(8) = {a + bj + cj2|a, b, c ∈ GF(2), j3 = j + 1}. For
f = 3 our construction yields four graphs with different edge-sets, namely Γ(3, 0),
Γ(3, j), Γ(3, j2) and Γ(3, j4), by Proposition 6.1.

Corollary 7.6 Up to isomorphism, Construction 5.1 for f = 3 yields two graphs,
one of which is connected. More precisely

(a) Γ(3, 0) ∼= 14112K3,3, and

(b) Γ(3, j) ∼= Γ(3, j2) ∼= Γ(3, j4) is connected.

Proof. Consider first α = 0. By Lemma 6.3, Γ(3, 0) ∼= mΓ(1, 0), where m =
|PSL(2, 28) : PSL(2, 2)|2 = 842. Part (a) now follows from Proposition 6.2. Now
assume α = j. By Proposition 6.4, Γ(3, j) is connected, and by Proposition 7.5(a),
Γ(3, j) ∼= Γ(3, j2) ∼= Γ(3, j4). �

For f = 4 also, our construction yields just one connected graph and three
disconnected ones, up to isomorphism. Take GF(16) = {a+ bk+ ck2 +dk3|a, b, c, d ∈
GF(2), k4 = k + 1}.

Corollary 7.7 Up to isomorphism, Construction 5.1 for f = 4 yields four graphs,
one of which is connected. More precisely

(a) Γ(4, 0) = 924800K3,3,

(b) for α ∈ {k5, k10}, Γ(f, α) ∼= 277440D, where D is the Desargues graph,

(c) for α ∈ {k, k2, k4, k8}, Γ(4, α) ∼= Γ(4, k) has 4080 connected components, and

(d) for α a generator not in {k, k2, k4, k8}, Γ(4, α) ∼= Γ(4, k3) is connected.

Proof. Consider first α = 0. By Lemma 6.3, Γ(4, 0) ∼= mΓ(1, 0), where m =
|PSL(2, 16) : PSL(2, 2)|2 = 6802. Part (a) now follows from Proposition 6.2.

The element k5 generates GF(4) = {0, 1, k5, k10}, and so by Lemma 6.3, Γ(4, k5) ∼=
mΓ(2, k5), where m = |PSL(2, 16) : PSL(2, 4)|2 = 682. Now Γ(2, k5) is Γ(2, i) from
Corollary 6.6, and so Γ(4, k5) ∼= 682.60D = 277440D. Now k10 = k5 + 1, and so by
Proposition 6.1, Γ(4, k5) = Γ(4, k10). Thus part (b) holds.
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Figure 1: Lattice

Now assume α = k. By Proposition 7.5(a), Γ(4, k) ∼= Γ(4, k2) ∼= Γ(4, k4) ∼=
Γ(4, k8). Since α is a generator and α2(f/2)

= α4 = α+ 1, by Proposition 6.4, Γ(4, k)
has |T | = 4080 connected components. Thus part (c) holds.

Finally assume α = k3. Then, by Proposition 7.5(a), Γ(f, β) ∼= Γ(f, k3) if
and only if β ∈ {α2i|0 ≤ i < f} ∪ {α2i + 1|0 ≤ i < f} = {k3, k6, k12, k9} ∪
{k14, k13, k11, k7}, that is, if β is any generator not in {k, k2, k4, k8}. Moreover, by
Proposition 6.4, Γ(4, k3) is connected since α4 6= α + 1. Thus part (d) holds. �

For f = 5, the bound of Proposition 7.5 tells us that there are at least 2 non-
isomorphic connected graphs obtained by Construction 5.1. Actually there are 30
generators, exactly 2f = 10 of them yielding isomorphic graphs, and so there are 3
pairwise non-isomorphic connected graphs for f = 5.

8 Symmetry properties for connected Γ(f, α)

In this section, we study the symmetry properties described in Tables 1 and 2
possessed by connected graphs Γ(f, α). This includes a formal proof of Theorems
1.1 and 1.2. We start by defining the following five groups of automorphisms.

Definition 8.1 We consider the following five subgroups of A, whose inclusions are
given in Figure 1.

1. A = G× 〈σ〉;

2. A+ = T 2 o 〈σπ〉;

3. G = T 2 o 〈π〉;

4. M = T 2 × 〈σ〉;

5. G+ = M+ = T 2.

Note that σπ stabilises the biparts of Γ(f, α) setwise and T 2 o 〈σπ〉 is maximal
in A, hence it is A+. By Proposition 5.3, G+ = T 2. Since T 2 stabilises the biparts
of Γ(f, α) and is maximal in M , M+ = T 2.

We have the following results on s-arc transitivity.
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Proposition 8.2 Let f ≥ 3, Γ(f, α) be a connected graph as described in Construc-
tion 5.1, and let G,M,A,G+, A+ be as in Definition 8.1. Then the following facts
hold.

1. Γ has girth at least 10.

2. Γ is (A, 3)-arc transitive but not (A, 4)-arc transitive.

3. Γ is locally (A+, 3)-arc transitive but not locally (A+, 4)-arc transitive.

4. Γ is (G, 2)-arc transitive but not (G, 3)-arc transitive.

5. Γ is (M, 2)-arc transitive but not (M, 3)-arc transitive.

6. Γ is locally (G+, 2)-arc transitive but not locally (G+, 3)-arc transitive.

Proof. See Proposition 7.1 for (2). Since A+
L = AL has order 3.22, we have that Γ

is locally (A+, 3)-arc transitive but not locally (A+, 4)-arc transitive and (3) holds.
By [3, Theorem 2.1], all the 3-arc transitive finite graphs of girth up to 9 with

valency 3 are known. The largest one has 570 vertices. By Theorem 5.3, |V Γ| >
26(26 − 1)2/3 = 84672. Thus Γ has girth at least 10 and (1) holds.

Let X ∈ {G,G+,M}. The stabiliser of the vertex “L” in X is precisely L, acting
as S3 on its three neighbours. Therefore the stabiliser of a vertex is 2-transitive on
its neighbours, and so Γ is locally (X, 2)-arc transitive (see for instance Lemma
3.2 of [8]). Since G and M are transitive on V Γ, Γ is also (G, 2)-arc transitive
and (M, 2)-arc transitive. Since girth(Γ) > 6, the number of 3-arcs starting in L is
exactly 12, and so XL, which has order 6, cannot be transitive on the 3-arcs starting
in L. Hence (4), (5) and (6) hold. �

The lower bound of 10 on the girth is an underestimate, but is sufficient for our
purposes. For example, a computation using MAGMA [2] shows that, for f = 3,
the unique connected graph Γ(f, j) (see Corollary 7.6) has girth 16 and for f = 4,
the girth of the unique connected graph Γ(3, k3) (see Corollary 7.7) is 30.

Question 8.3 Is the girth of the connected graphs obtained from Construction 5.1
unbounded?

We use the following easily proved fact (see [4, Lemma 7.2]).

Lemma 8.4 Let Γ be a graph of girth g, and G 6 AutΓ. If s 6 [g−1
2

], then Γ is
(locally) (G, s)-distance transitive if and only if Γ is (locally) (G, s)-arc transitive.

Since by Proposition 8.2 each connected graph Γ(f, α) has girth g satisfying
3 6 [9

2
] 6 [g−1

2
], Γ is (locally) (X, s)-distance transitive if and only if Γ is (locally)

(X, s)-arc transitive for any of the groups X in Definition 8.1. Hence the following
Corollary follows.

Corollary 8.5 Let f ≥ 3, Γ(f, α) be a connected graph as described in Construction
5.1, and let G,M,A,G+, A+ be as in Definition 8.1. Then the following facts hold.

1. Γ is (A, 3)-distance transitive but not (A, 4)-distance transitive.
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2. Γ is locally (A+, 3)-distance transitive but not locally (A+, 4)-distance transi-
tive.

3. Γ is (G, 2)-distance transitive but not (G, 3)-distance transitive.

4. Γ is (M, 2)-distance transitive but not (M, 3)-distance transitive.

5. Γ is locally (G+, 2)-distance transitive but not locally (G+, 3)-distance transi-
tive.

The following proposition determines, for each of the automorphism groups
X ∈ {A,G,M}, whether X is biquasiprimitive on vertices and whether X+ is
quasiprimitive on each bipart. Recall that M+ = G+.

Proposition 8.6 Let f ≥ 3, Γ = Γ(f, α) be a connected graph described in Con-
struction 5.1, and let G,M,A,G+, A+ be as in Definition 8.1. Then G is bi-
quasiprimitive on V Γ, while M and A are not biquasiprimitive on V Γ, and A+

is quasiprimitive on each bipart, while G+ is not.

Proof. We recall that σ centralises G. Since π (respectively σπ) interchanges the
two direct factors of G+, T 2 is a minimal normal subgroup of G and of A+, and
indeed is the unique minimal normal subgroup. Since T 2 has two orbits on vertices,
G is biquasiprimitive on V Γ. Also A+ is faithful and quasiprimitive on each of its
orbits.

Let N = 1 × T , then N is normal in G+ and in M . Notice that |N | = |T | =
2f (22f−1) is less than the number of vertices in each bipart. Hence N is intransitive
on each bipart and so ΓN is nondegenerate. More precisely |V ΓN | = 2f (22f − 1)/3
with half the vertices in each bipart. Thus G+ is not quasiprimitive on each bipart.

Now let N ′ = 〈σ〉, then N ′ is normal in A and in M . Obviously N ′ (which has
order 2) is intransitive on each bipart and so ΓN ′ is nondegenerate. More precisely
|V ΓN ′ | = |V Γ|/2. Thus A and M are not biquasiprimitive on V Γ. �

Remark 8.7 As mentioned in the introduction, if G+ is not quasiprimitive on each
bipart, which is the case here, then we can form a G+-normal quotient and obtain
a smaller locally s-arc-transitive graph. For Γ = Γ(f, α), we get the quotient by
N = 1 × T , which is a cubic bipartite graph. It is locally (T, 2)-arc transitive
such that T ∼= G+/N has two orbits on vertices and the stabiliser of any vertex is
isomorphic to S3. Moreover, by [8, Theorem 1.1], Γ(f, α) is a cover of this quotient.

We can now prove our two main theorems.

Proof of Theorem 1.1 By Proposition 7.5(b), the number of non-isomorphic con-
nected graphs Γ(f, α) increases with f , and so there are an infinite number of such
graphs.

The graphs are bipartite, have valency 3 and G 6 Aut(Γ(f, α)) by Proposition
5.3. The graphs are (G, 2)-distance transitive by Corollary 8.5(2) and the fact that
G is transitive on vertices.

By Proposition 8.6, G is biquasiprimitive on V Γ and G+ is not quasiprimitive
on each bipart. �

17



Proof of Theorem 1.2 By Proposition 7.1, G has index 2 in A = Aut(Γ), and by
Proposition 8.2, Γ is (A, 3)-arc-transitive. It follows from Proposition 8.6 that A is
not biquasiprimitive on vertices and A+ is quasiprimitive on each bipart. �

Next we verify that G is indeed of the type given in [10, Theorem 1.1(c)(i)] as
claimed in the introduction. First a definition:

Definition 8.8 A permutation group G 6 Sym(Ω) is biquasiprimitive of type (c)(i),
as described in Theorem 1.1 of [10], if G is permutationally isomorphic to a group
with the following properties.

(a) |Ω| = 2m and the even subgroup G+ 6 Sm × Sm is equal to {(h, hϕ)|h ∈ H},
where H 6 Sm, ϕ ∈ Aut(H) and ϕ2 is an inner automorphism of H.

(b) H has two intransitive minimal normal subgroups R and S such that S = Rϕ,
R = Sϕ, and R× S is a transitive subgroup of Sm.

(c) {(h, hϕ)|h ∈ R× S} is the unique minimal normal subgroup of G.

Corollary 8.9 Let f ≥ 3, Γ = Γ(f, α) be a connected graph described in Construc-
tion 5.1, and G also as in Construction 5.1. Then G 6 Sym(V Γ) is of type (c)(i),
as described in Theorem 1.1 of [10].

Proof. By [10, Theorem 1.2 and Proposition 4.1], a biquasiprimitive group acting
2-arc transitively on a bipartite graph must satisfy the conditions of (a)(i) or (c)(i) of
Theorem 1.1 of [10]. For groups satisfying (a)(i), the even subgroup is quasiprimitive
on each bipart. Since the permutation group induced by the action of G+ = T 2 on a
bipart is not quasiprimitive, by Proposition 8.6, G satisfies the conditions of (c)(i),
and hence is of type (c)(i) as in Definition 8.8. More precisely, we have m = |V Γ|/2,
H = T 2, ϕ = π, R = 1× T , S = T × 1, and R× S = T 2 = G+. �

The proof of Proposition 8.6 shows that Γ is an A-normal double cover of its
A-normal quotient Γ〈σ〉. We have {L,Lπ} = L〈σ〉. A computation using MAGMA
[2] shows that, when f = 3, Lπ is the unique vertex at maximal distance from L.
In other words, Γ is antipodal with antipodal blocks of size 2.

Question 8.10 Let f ≥ 3 and Γ = Γ(f, α) be a connected graph described in Con-
struction 5.1. Is Γ always antipodal with antipodal blocks of size 2?

References

[1] N. Biggs, Algebraic Graph Theory, Cambridge University Press, 52th Ed, 1992,
New York.

[2] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user
language, J. Symb. Comp. 24 3/4 (1997) 235-265. Also see the Magma home
page at http://www.maths.usyd.edu.au:8000/u/magma/.

[3] M. Conder, R. Nedela, Symmetric cubic graphs of small girth, J. Combin.
Theory Ser. B 97(5) (2007), 757-768.

18



[4] A. Devillers, M. Giudici, C. H. Li and C. E. Praeger, Locally s-distance tran-
sitive graphs, submitted.

[5] L. E. Dickson, Linear groups: With an exposition of the Galois field theory,
Dover Publications Inc., New York, 1958.

[6] J. D. Dixon and B. Mortimer, Permutation groups, Graduate Texts in Mathe-
matics, 163. Springer-Verlag, New York, 1996.
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